mirror of
https://github.com/Dichgrem/Blog.git
synced 2025-07-30 16:49:31 -04:00
438 lines
18 KiB
HTML
438 lines
18 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en">
|
||
|
||
<head>
|
||
<title>Dich'blog</title>
|
||
|
||
<meta http-equiv="content-type" content="text/html; charset=utf-8">
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1">
|
||
<meta name="robots" content="noodp"/>
|
||
|
||
<link rel="stylesheet" href="https://blog.dich.bid/style.css">
|
||
<link rel="stylesheet" href="https://blog.dich.bid/color/blue.css">
|
||
|
||
<link rel="stylesheet" href="https://blog.dich.bid/color/background_dark.css">
|
||
|
||
<link rel="stylesheet" href="https://blog.dich.bid/font-hack-subset.css">
|
||
|
||
<meta name="description" content="">
|
||
|
||
<meta property="og:description" content="">
|
||
<meta property="og:title" content="Dich'blog">
|
||
<meta property="og:type" content="article">
|
||
<meta property="og:url" content="https://blog.dich.bid/windows-5-py/">
|
||
|
||
<meta name="twitter:card" content="summary_large_image">
|
||
<meta name="twitter:description" content="">
|
||
<meta name="twitter:title" content="Dich'blog">
|
||
<meta property="twitter:domain" content="blog.dich.bid">
|
||
<meta property="twitter:url" content="https://blog.dich.bid/windows-5-py/">
|
||
|
||
<link rel="alternate" type="application/atom+xml" title="Dich'blog Atom Feed" href="https://blog.dich.bid/atom.xml" />
|
||
|
||
|
||
<link rel="icon" type="image/png" href=/dich.webp />
|
||
|
||
<!-- ✅ Added center alignment styles -->
|
||
<style>
|
||
.footer {
|
||
text-align: center;
|
||
padding: 1rem 0;
|
||
}
|
||
|
||
.footer__inner {
|
||
display: flex;
|
||
justify-content: center;
|
||
flex-direction: column;
|
||
align-items: center;
|
||
}
|
||
|
||
.copyright {
|
||
text-align: center;
|
||
}
|
||
</style>
|
||
</head>
|
||
|
||
<body class="">
|
||
<div class="container">
|
||
|
||
<header class="header">
|
||
<div class="header__inner">
|
||
<div class="header__logo">
|
||
|
||
<a href="https://blog.dich.bid" style="text-decoration: none;">
|
||
<div class="logo">
|
||
|
||
Dich'blog
|
||
|
||
</div>
|
||
</a>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
|
||
<nav class="menu">
|
||
<ul class="menu__inner">
|
||
<li class="active"><a href="https://blog.dich.bid">blog</a></li>
|
||
|
||
<li><a href="https://blog.dich.bid/archive">archive</a></li>
|
||
|
||
<li><a href="https://blog.dich.bid/tags">tags</a></li>
|
||
|
||
<li><a href="https://blog.dich.bid/weekly">weekly</a></li>
|
||
|
||
<li><a href="https://blog.dich.bid/search">search</a></li>
|
||
|
||
<li><a href="https://blog.dich.bid/about">about me</a></li>
|
||
|
||
<li><a href="https://blog.dich.bid/links">links</a></li>
|
||
|
||
<li><a href="https://blog.dich.bid/atom.xml">rss</a></li>
|
||
|
||
<li><a href="https://github.com/Dichgrem" target="_blank" rel="noopener noreferrer">github</a></li>
|
||
</ul>
|
||
</nav>
|
||
|
||
|
||
|
||
</header>
|
||
|
||
|
||
<div class="content">
|
||
|
||
<div class="post">
|
||
|
||
<h1 class="post-title"><a href="https://blog.dich.bid/windows-5-py/">Windows系列(5):Python开发配置</a></h1>
|
||
<div class="post-meta-inline">
|
||
|
||
<span class="post-date">
|
||
2024-05-31
|
||
</span>
|
||
|
||
</div>
|
||
|
||
|
||
<span class="post-tags-inline">
|
||
:: tags:
|
||
<a class="post-tag" href="https://blog.dich.bid/tags/windows/">#Windows</a></span>
|
||
|
||
|
||
<div class="post-content">
|
||
<p>前言 由于 Windows 中开发环境较 linux 复杂,这里总结 Windows 中使用 Jupyter 开发 Python 的环境配置。</p>
|
||
<span id="continue-reading"></span><h2 id="an-zhuang">安装</h2>
|
||
<p>Python是一种跨平台的编程语言,社区生态丰富,有许多现成的包可以调用。传统的安装方法如下:</p>
|
||
<ul>
|
||
<li>下载、安装Pythond解释器;</li>
|
||
<li>验证安装;</li>
|
||
<li>安装VScode以及Python的拓展;</li>
|
||
</ul>
|
||
<p>但Python开发项目时往往需要不同版本,不同的第三方包,如果用传统方法难以管理;因此现在的主流方法是:</p>
|
||
<ul>
|
||
<li>安装Anaconda或miniconda等Python集成包;</li>
|
||
<li>使用conda创建并启动一个Python环境;</li>
|
||
<li>安装jupyter编辑器编写python。</li>
|
||
</ul>
|
||
<p>在<a href="https://www.anaconda.com/">Anaconda官网</a>下载并安装,安装成功后,命令行中敲<code>conda info</code>,会显示conda的版本和python的版本等详细信息;再敲<code>conda list</code>,会列出当前环境下所有安装的包。</p>
|
||
<p>安装好了Anaconda,就相当于同时有了Python、环境管理器、包管理器以及一大堆开箱即用的科学计算工具包。</p>
|
||
<h2 id="shi-yong">使用</h2>
|
||
<p>安装好了,默认是在base虚拟环境下,此时我们从base环境复制一份出来,在新环境里工作。</p>
|
||
<ul>
|
||
<li>复制base环境, 创建test环境</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda create --name test --clone base
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>激活test环境</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda activate test
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>取消Conda默认激活base虚拟环境</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda config --set auto_activate_base false
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>列出本机的所有环境,如下,可见当前有2个环境,当前激活的是test环境:</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>(test) ➜ ~ conda info -e
|
||
</span><span>- conda environments:
|
||
</span><span>#
|
||
</span><span>base /Volumes/300g/opt/anaconda3
|
||
</span><span>test * /Volumes/300g/opt/anaconda3/envs/test
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>Anaconda默认安装了jupyter,打开jupyter:</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>jupyter notebook
|
||
</span></code></pre>
|
||
<p>此时会自动弹出浏览器窗口打开Jupyter Notebook网页,默认为<code>http://localhost:8888</code></p>
|
||
<blockquote>
|
||
<p>Jupyter汉化/下载中文包:<code>pip install jupyterlab-language-pack-zh-CN</code></p>
|
||
</blockquote>
|
||
<h3 id="xu-ni-huan-jing-guan-li">虚拟环境管理</h3>
|
||
<ul>
|
||
<li>创建环境,后面的python=3.6是指定python的版本</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda create --name env_name python=3.6
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>创建包含某些包的环境(也可以加上版本信息)</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda create --name env_name python=3.7 numpy scrapy
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>激活某个环境</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda activate env_name
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>关闭某个环境</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda deactivate
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>复制某个环境</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda create --name new_env_name --clone old_env_name
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>删除某个环境</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda remove --name env_name --all
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>生成需要分享环境的yml文件(需要在虚拟环境中执行)</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda env export > environment.yml
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>别人在自己本地使用yml文件创建虚拟环境</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda env create -f environment.yml
|
||
</span></code></pre>
|
||
<h3 id="bao-guan-li">包管理</h3>
|
||
<ul>
|
||
<li>列出当前环境下所有安装的包</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda list
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>列举一个指定环境下的所有包</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda list -n env_name
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>查询库</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda search scrapys
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>安装库安装时可以指定版本例如:(scrapy=1.5.0)</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda install scrapy
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>为指定环境安装某个包</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda install --name target_env_name package_name
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>更新安装的库</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda update scrapy
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>更新指定环境某个包</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda update -n target_env_name package_name
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>更新所有包</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda update --all
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>删除已经安装的库</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda remove scrapy
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>删除指定环境某个包</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda remove -n target_env_name package_name
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>更多命令请查看官方文档或者查询帮助命令:</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda --help
|
||
</span><span>
|
||
</span><span>conda install --help
|
||
</span></code></pre>
|
||
<p>有了Conda包管理器,为什么Anaconda环境中,可能还需要用pip安装包呢?因为Anaconda本身只提供部分包,远没有pip提供的包多,有时conda无法安装我们需要的包,此时需要用pip将其装到conda环境里。</p>
|
||
<p>安装特定版本的包,conda用=,pip用==。例如:</p>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda install xxx=1.0.0
|
||
</span><span>pip install xxx==1.0.0
|
||
</span></code></pre>
|
||
<h2 id="jupytershi-yong">Jupyter使用</h2>
|
||
<p>安装Anaconda并启动一个环境之后,如何让Jupyter Notebook在我们要的环境中启动呢?</p>
|
||
<ul>
|
||
<li>激活目标环境</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda activate myenv
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>安装 ipykernel(如尚未安装)
|
||
为了让 Jupyter Notebook 能识别该环境中的 Python 解释器,你需要在该环境中安装 ipykernel:</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>conda install ipykernel
|
||
</span><span>
|
||
</span><span># 或者使用 pip
|
||
</span><span>
|
||
</span><span>pip install ipykernel
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>注册环境内核
|
||
将该环境注册为 Jupyter 的一个内核(kernel),这样启动 Jupyter Notebook 后就能选择这个内核:</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>python -m ipykernel install --user --name myenv --display-name "Python (myenv)"
|
||
</span><span>
|
||
</span><span># 这里 --name 指定内核的名称,--display-name 是在 Jupyter Notebook 界面中显示的名称,你可以根据需要自定义。
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>启动 Jupyter Notebook:依然在激活后的环境中,启动 Jupyter Notebook:</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>jupyter notebook
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>启动后,你在新建 notebook 时可以选择刚刚注册的内核 “Python (myenv)” 来确保使用该环境的 Python 解释器。</li>
|
||
</ul>
|
||
<blockquote>
|
||
<p>当然,你也可以使用其他编辑器/IDE如 Sublime Text 或者 JetBrains 系列的 PyCharm 。</p>
|
||
</blockquote>
|
||
<blockquote>
|
||
<p>linux中使用Miniconda</p>
|
||
</blockquote>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span># Miniconda安装脚本
|
||
</span><span>wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
|
||
</span><span># 执行以下命令启动安装程序:
|
||
</span><span>bash Miniconda3-latest-Linux-x86_64.sh
|
||
</span><span># 验证安装
|
||
</span><span>conda --version
|
||
</span></code></pre>
|
||
<h2 id="shi-yong-uvti-dai-conda">使用UV替代Conda</h2>
|
||
<blockquote>
|
||
<p>UV(由 Astral 团队开发)是一个用 Rust 编写的高性能包管理器,提供了类似 Conda 的虚拟环境管理和依赖解析功能,并且在大多数场景下比 pip 和 Conda 快 10–100 倍。它通过命令行工具如 uv venv(创建/管理虚拟环境)和 uv pip(安装/锁定/同步依赖)来覆盖传统的 conda create、conda install、conda env export 等操作,但本身并不管理底层的 C/C++ 库,因此对于诸如 GDAL、SciPy 等需要系统级二进制依赖的包,仍建议在 Conda/系统包管理器中预装相关库,然后用 UV 来管理 Python 包。</p>
|
||
</blockquote>
|
||
<p><strong>安装与激活</strong></p>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>wget -qO- https://astral.sh/uv/install.sh | sh
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>在当前目录下创建 .venv,使用系统默认 Python(若不存在则自动下载)</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>uv venv
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>指定环境名称或路径</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>uv venv myenv
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>指定 Python 版本(需系统已有或可下载)</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>uv venv --python 3.11
|
||
</span></code></pre>
|
||
<ul>
|
||
<li>激活</li>
|
||
</ul>
|
||
<pre style="background-color:#151515;color:#e8e8d3;"><code><span>source .venv/bin/activate
|
||
</span></code></pre>
|
||
<p><strong>安装包</strong></p>
|
||
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#888888;"># 安装单个包
|
||
</span><span style="color:#ffb964;">uv</span><span> pip install requests
|
||
</span><span>
|
||
</span><span style="color:#888888;"># 批量安装并自动锁定依赖
|
||
</span><span style="color:#ffb964;">uv</span><span> pip install fastapi uvicorn sqlalchemy
|
||
</span></code></pre>
|
||
<p><strong>生成与同步锁文件</strong></p>
|
||
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#888888;"># 从 requirements.in 生成统一依赖文件
|
||
</span><span style="color:#ffb964;">uv</span><span> pip compile docs/requirements.in \
|
||
</span><span style="color:#ffb964;"> --universal </span><span>\
|
||
</span><span style="color:#ffb964;"> --output-file</span><span> docs/requirements.txt
|
||
</span><span>
|
||
</span><span style="color:#888888;"># 根据锁文件同步环境
|
||
</span><span style="color:#ffb964;">uv</span><span> pip sync docs/requirements.txt
|
||
</span></code></pre>
|
||
<p>此流程替代 <code>conda env export</code> + <code>conda env update</code>,并保证跨平台一致性 ([GitHub][3])。</p>
|
||
<p><strong>查看与卸载</strong></p>
|
||
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">uv</span><span> pip list </span><span style="color:#888888;"># 列出已安装包(类似 conda list)
|
||
</span><span style="color:#ffb964;">uv</span><span> pip uninstall numpy
|
||
</span></code></pre>
|
||
<p><strong>替代常见 Conda 工作流</strong></p>
|
||
<table><thead><tr><th>Conda 操作</th><th>UV 对应</th></tr></thead><tbody>
|
||
<tr><td><code>conda create -n env python=3.x</code></td><td><code>uv venv --python 3.x</code></td></tr>
|
||
<tr><td><code>conda activate env</code></td><td><code>source .venv/bin/activate</code> 或 <code>activate</code></td></tr>
|
||
<tr><td><code>conda install pkg1 pkg2</code></td><td><code>uv pip install pkg1 pkg2</code></td></tr>
|
||
<tr><td><code>conda env export > env.yml</code></td><td><code>uv pip compile requirements.in</code></td></tr>
|
||
<tr><td><code>conda env update -f env.yml</code></td><td><code>uv pip sync requirements.txt</code></td></tr>
|
||
<tr><td><code>conda list</code></td><td><code>uv pip list</code></td></tr>
|
||
</tbody></table>
|
||
<p><strong>最佳实践</strong>:</p>
|
||
<ol>
|
||
<li><strong>系统依赖</strong>:用 Conda/Mamba 安装较难编译的 C 库(<code>conda install gdal</code>)。</li>
|
||
<li><strong>Python 包</strong>:用 UV 管理所有纯 Python 依赖(<code>uv pip install pandas scikit-learn</code>)。</li>
|
||
<li><strong>统一锁定</strong>:把 <code>uv pip compile</code> 生成的 <code>requirements.txt</code> 放入版本控制,确保团队环境一致。</li>
|
||
</ol>
|
||
<hr />
|
||
<p><strong>Done.</strong></p>
|
||
|
||
</div>
|
||
|
||
|
||
<div class="pagination">
|
||
<div class="pagination__title">
|
||
<span class="pagination__title-h">Thanks for reading! Read other posts?</span>
|
||
<hr />
|
||
</div>
|
||
<div class="pagination__buttons">
|
||
<span class="button previous">
|
||
<a href="https://blog.dich.bid/windows-6-c/">
|
||
<span class="button__icon">←</span>
|
||
<span class="button__text">Windows系列(6):C/C++开发配置</span>
|
||
</a>
|
||
</span>
|
||
|
||
|
||
<span class="button next">
|
||
<a href="https://blog.dich.bid/about-cslearning/">
|
||
<span class="button__text">乱七八糟:计算机科学优质视频</span>
|
||
<span class="button__icon">→</span>
|
||
</a>
|
||
</span>
|
||
</div>
|
||
</div>
|
||
|
||
</div>
|
||
|
||
</div>
|
||
|
||
|
||
<footer class="footer">
|
||
<div class="footer__inner">
|
||
<div class="copyright">
|
||
<span>©
|
||
2025
|
||
Dichgrem</span>
|
||
<span class="copyright-theme">
|
||
<span class="copyright-theme-sep"> :: CC BY-SA 4.0 :: A friend comes from distant lands</span>
|
||
</a>
|
||
</span>
|
||
</div>
|
||
</div>
|
||
</footer>
|
||
|
||
</div>
|
||
</body>
|
||
</html>
|
||
|