clean:history

This commit is contained in:
dichgrem
2025-11-21 19:20:24 +08:00
parent 845850871a
commit 14a54b2f7b
259 changed files with 34738 additions and 0 deletions

View File

@@ -0,0 +1,475 @@
<!DOCTYPE html>
<html lang="en">
<head>
<title>Dich&#x27;s Blog</title>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="robots" content="noodp"/>
<!-- 字体预加载 - 减少布局偏移 CLS -->
<link rel="preload" href="https://blog.dich.bid/fonts/hack-regular.woff2?sha=3114f1256" as="font" type="font/woff2" crossorigin>
<link rel="preload" href="https://blog.dich.bid/fonts/hack-bold.woff2?sha=3114f1256" as="font" type="font/woff2" crossorigin>
<link rel="preload" href="https://blog.dich.bid/fonts/hack-italic.woff2?sha=3114f1256" as="font" type="font/woff2" crossorigin>
<link rel="preload" href="https://blog.dich.bid/fonts/hack-bolditalic.woff2?sha=3114f1256" as="font" type="font/woff2" crossorigin>
<link rel="stylesheet" href="https://blog.dich.bid/style.css">
<link rel="stylesheet" href="https://blog.dich.bid/color/blue.css">
<link rel="stylesheet" href="https://blog.dich.bid/font-hack-subset.css">
<meta name="description" content="">
<meta property="og:description" content="">
<meta property="og:title" content="Dich's Blog">
<meta property="og:type" content="article">
<meta property="og:url" content="https://blog.dich.bid/windows-5-py/">
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:description" content="">
<meta name="twitter:title" content="Dich's Blog">
<meta property="twitter:domain" content="blog.dich.bid">
<meta property="twitter:url" content="https://blog.dich.bid/windows-5-py/">
<link rel="alternate" type="application/atom+xml" title="Dich&#x27;s Blog Atom Feed" href="https://blog.dich.bid/atom.xml" />
<link rel="shortcut icon" type="image/webp" href="/dich.webp">
<!-- ✅ Added center alignment styles -->
<style>
.footer {
text-align: center;
padding: 1rem 0;
}
.footer__inner {
display: flex;
justify-content: center;
flex-direction: column;
align-items: center;
}
.copyright {
text-align: center;
}
</style>
</head>
<body class="">
<div class="container">
<header class="header">
<div class="header__inner">
<div class="header__logo">
<a href="https://blog.dich.bid" style="text-decoration: none;">
<div class="logo">
Dich&#x27;s Blog
</div>
</a>
</div>
</div>
<nav class="menu">
<ul class="menu__inner">
<li class="active"><a href="https://blog.dich.bid">Blog</a></li>
<li><a href="https://blog.dich.bid/archive">Archive</a></li>
<li><a href="https://blog.dich.bid/weekly">Weekly</a></li>
<li><a href="https://blog.dich.bid/tags">Tags</a></li>
<li><a href="https://blog.dich.bid/search">Search</a></li>
<li><a href="https://blog.dich.bid/links">Links</a></li>
<li><a href="https://blog.dich.bid/atom.xml">Rss</a></li>
<li><a href="https://blog.dich.bid/about">About me</a></li>
<li><a href="https://github.com/Dichgrem" target="_blank" rel="noopener noreferrer">My github</a></li>
<li><a href="https://github.com/getzola/zola" target="_blank" rel="noopener noreferrer">Zola frame</a></li>
</ul>
</nav>
</header>
<div class="content">
<div class="post" data-pagefind-body>
<h1 class="post-title"><a href="https://blog.dich.bid/windows-5-py/">Windows系列(5):Python开发配置</a></h1>
<div class="post-meta-inline">
<span class="post-date">
2024-05-31
</span>
</div>
<span class="post-tags-inline">
:: tags:&nbsp;
<a class="post-tag" href="https://blog.dich.bid/tags/windows/">#Windows</a></span>
<div class="post-content">
<p>前言 由于 Windows 中开发环境较 linux 复杂,这里总结 Windows 中使用 Jupyter 开发 Python 的环境配置。</p>
<span id="continue-reading"></span><h2 id="an-zhuang">安装</h2>
<p>Python是一种跨平台的编程语言,社区生态丰富,有许多现成的包可以调用。传统的安装方法如下:</p>
<ul>
<li>下载、安装Pythond解释器</li>
<li>验证安装;</li>
<li>安装VScode以及Python的拓展</li>
</ul>
<p>但Python开发项目时往往需要不同版本不同的第三方包如果用传统方法难以管理因此现在的主流方法是</p>
<ul>
<li>安装Anaconda或miniconda等Python集成包</li>
<li>使用conda创建并启动一个Python环境</li>
<li>安装jupyter编辑器编写python。</li>
</ul>
<p><a href="https://www.anaconda.com/">Anaconda官网</a>下载并安装,安装成功后,命令行中敲<code>conda info</code>会显示conda的版本和python的版本等详细信息再敲<code>conda list</code>,会列出当前环境下所有安装的包。</p>
<p>安装好了Anaconda就相当于同时有了Python、环境管理器、包管理器以及一大堆开箱即用的科学计算工具包。</p>
<blockquote>
<p>linux中安装Miniconda</p>
</blockquote>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#888888;"># Miniconda安装脚本
</span><span style="color:#ffb964;">wget</span><span> https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
</span><span style="color:#888888;"># 执行以下命令启动安装程序:
</span><span style="color:#ffb964;">bash</span><span> Miniconda3-latest-Linux-x86_64.sh
</span><span style="color:#888888;"># 验证安装
</span><span style="color:#ffb964;">conda --version
</span></code></pre>
<h2 id="shi-yong">使用</h2>
<ul>
<li>创建环境后面的python=3.6是指定python的版本</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> create</span><span style="color:#ffb964;"> --name</span><span> env_name python=3.6
</span></code></pre>
<ul>
<li>创建包含某些包的环境(也可以加上版本信息)</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> create</span><span style="color:#ffb964;"> --name</span><span> env_name python=3.7 numpy scrapy
</span></code></pre>
<ul>
<li>激活某个环境</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> activate env_name
</span></code></pre>
<ul>
<li>关闭某个环境</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> deactivate env_name
</span></code></pre>
<ul>
<li>复制某个环境</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> create</span><span style="color:#ffb964;"> --name</span><span> new_env_name</span><span style="color:#ffb964;"> --clone</span><span> old_env_name
</span></code></pre>
<ul>
<li>删除某个环境</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> remove</span><span style="color:#ffb964;"> --name</span><span> env_name</span><span style="color:#ffb964;"> --all
</span></code></pre>
<ul>
<li>生成需要分享环境的yml文件需要在虚拟环境中执行</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> env export &gt; environment.yml
</span></code></pre>
<ul>
<li>在本地使用yml文件创建虚拟环境</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> env create</span><span style="color:#ffb964;"> -f</span><span> environment.yml
</span></code></pre>
<ul>
<li>列出本机的所有环境如下可见当前有2个环境当前激活的是test环境</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span>(</span><span style="color:#ffb964;">test</span><span>) ➜ </span><span style="color:#ffb964;">~</span><span> conda info</span><span style="color:#ffb964;"> -e
</span><span style="color:#ffb964;">-</span><span> conda environments:
</span><span style="color:#888888;">#
</span><span style="color:#ffb964;">base</span><span> /Volumes/300g/opt/anaconda3
</span><span style="color:#ffb964;">test </span><span>* /Volumes/300g/opt/anaconda3/envs/test
</span></code></pre>
<h3 id="bao-guan-li">包管理</h3>
<ul>
<li>列出当前环境下所有安装的包</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> list
</span></code></pre>
<ul>
<li>列举一个指定环境下的所有包</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> list</span><span style="color:#ffb964;"> -n</span><span> env_name
</span></code></pre>
<ul>
<li>查询库</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> search scrapys
</span></code></pre>
<ul>
<li>安装库安装时可以指定版本例如scrapy=1.5.0</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> install scrapy
</span></code></pre>
<ul>
<li>为指定环境安装某个包</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> install</span><span style="color:#ffb964;"> --name</span><span> target_env_name package_name
</span></code></pre>
<ul>
<li>更新安装的库</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> update scrapy
</span></code></pre>
<ul>
<li>更新指定环境某个包</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> update</span><span style="color:#ffb964;"> -n</span><span> target_env_name package_name
</span></code></pre>
<ul>
<li>更新所有包</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> update</span><span style="color:#ffb964;"> --all
</span></code></pre>
<ul>
<li>删除已经安装的库</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> remove scrapy
</span></code></pre>
<ul>
<li>删除指定环境某个包</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> remove</span><span style="color:#ffb964;"> -n</span><span> target_env_name package_name
</span></code></pre>
<ul>
<li>更多命令请查看官方文档或者查询帮助命令:</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda --help
</span><span>
</span><span style="color:#ffb964;">conda</span><span> install</span><span style="color:#ffb964;"> --help
</span></code></pre>
<h2 id="jupytershi-yong">Jupyter使用</h2>
<p>安装Anaconda并启动一个环境之后如何让Jupyter Notebook在我们要的环境中启动呢</p>
<ul>
<li>安装jupyter</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> install jupyter notebook
</span></code></pre>
<ul>
<li>配置虚拟机中允许宿主机访问</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#888888;"># 生成配置
</span><span style="color:#ffb964;">jupyter</span><span> notebook</span><span style="color:#ffb964;"> --generate-config
</span><span style="color:#888888;"># 编辑配置
</span><span style="color:#ffb964;">nano ~</span><span>/.jupyter/jupyter_notebook_config.py
</span><span style="color:#888888;"># 写入这三行
</span><span style="color:#ffb964;">c.NotebookApp.ip</span><span> = </span><span style="color:#556633;">&#39;</span><span style="color:#99ad6a;">0.0.0.0</span><span style="color:#556633;">&#39; </span><span style="color:#888888;"># 允许任何 IP 访问
</span><span style="color:#ffb964;">c.NotebookApp.port</span><span> = 8888 </span><span style="color:#888888;"># 指定端口
</span><span style="color:#ffb964;">c.NotebookApp.open_browser</span><span> = False </span><span style="color:#888888;"># 不自动开浏览器
</span><span style="color:#888888;"># 重启jupyter
</span><span style="color:#ffb964;">jupyter</span><span> notebook
</span></code></pre>
<ul>
<li>安装 ipykernel</li>
</ul>
<p>为了让 Jupyter Notebook 能识别该环境中的 Python 解释器,你需要在该环境中安装 ipykernel</p>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> install ipykernel
</span></code></pre>
<ul>
<li>注册环境内核</li>
</ul>
<p>将该环境注册为 Jupyter 的一个内核kernel这样启动 Jupyter Notebook 后就能选择这个内核:</p>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">python -m</span><span> ipykernel install</span><span style="color:#ffb964;"> --user --name</span><span> myenv</span><span style="color:#ffb964;"> --display-name </span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">Python (myenv)</span><span style="color:#556633;">&quot;
</span></code></pre>
<p>这里 --name 指定内核的名称,--display-name 是在 Jupyter Notebook 界面中显示的名称,你可以根据需要自定义。</p>
<ul>
<li>启动 Jupyter Notebook依然在激活后的环境中启动 Jupyter Notebook启动后你在新建 notebook 时可以选择刚刚注册的内核 “Python (myenv)” 来确保使用该环境的 Python 解释器。</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">jupyter</span><span> notebook
</span></code></pre>
<ul>
<li>汉化jupyter(可选)</li>
</ul>
<p>Jupyter Notebook 本身没有官方语言包,但可以用第三方扩展 <code>jupyter_contrib_nbextensions</code><code>notebook-translation</code>来实现部分汉化</p>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">pip</span><span> install jupyter_contrib_nbextensions
</span><span style="color:#ffb964;">jupyter</span><span> contrib nbextension install</span><span style="color:#ffb964;"> --user
</span><span style="color:#ffb964;">pip</span><span> install jupyter-notebook-translation
</span></code></pre>
<blockquote>
<p>当然,你也可以使用其他编辑器/IDE如 Sublime Text 或者 JetBrains 系列的 PyCharm 。</p>
</blockquote>
<h2 id="shi-yong-uv-ti-dai-conda">使用 UV 替代 Conda</h2>
<blockquote>
<p>UV由 Astral 团队开发)是一个用 Rust 编写的高性能 Python 包管理器,提供类似 Conda 的虚拟环境管理和依赖解析功能,在大多数场景下比 pip 和 Conda 快 10100 倍。它通过命令行工具如 <code>uv venv</code>(创建/管理虚拟环境)和 <code>uv pip</code>(安装/锁定/同步依赖)覆盖传统的 Conda 流程,但本身不管理底层的 C/C++ 库,因此对于 GDAL、SciPy 等需要系统级二进制依赖的包,仍建议先通过系统包管理器或 Conda 安装,然后用 UV 管理 Python 包。</p>
</blockquote>
<hr />
<ul>
<li>安装 UV</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">wget -qO-</span><span> https://astral.sh/uv/install.sh | </span><span style="color:#ffb964;">sh
</span></code></pre>
<ul>
<li>创建与管理环境</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#888888;"># 创建虚拟环境,指定 Python 版本
</span><span style="color:#ffb964;">uv</span><span> venv</span><span style="color:#ffb964;"> --python</span><span> 3.12
</span><span>
</span><span style="color:#888888;"># 激活环境
</span><span>source .venv/bin/activate
</span><span>
</span><span style="color:#888888;"># 退出环境
</span><span style="color:#ffb964;">deactivate
</span><span>
</span><span style="color:#888888;"># 删除环境
</span><span style="color:#ffb964;">rm -rf</span><span> .venv
</span></code></pre>
<ul>
<li>直接运行</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">uv</span><span> run python
</span><span style="color:#ffb964;">uv</span><span> run jupyter lab
</span></code></pre>
<ul>
<li>注册 Jupyter 内核</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">uv</span><span> run python</span><span style="color:#ffb964;"> -m</span><span> ipykernel install</span><span style="color:#ffb964;"> --user --name</span><span> bank</span><span style="color:#ffb964;"> --display-name </span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">Python (bank)</span><span style="color:#556633;">&quot;
</span></code></pre>
<hr />
<ul>
<li>安装依赖</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">uv</span><span> add tensorflow
</span><span style="color:#ffb964;">uv</span><span> pip install requests fastapi uvicorn sqlalchemy
</span></code></pre>
<blockquote>
<p>安装完成后UV 会自动更新 <code>uv.lock</code> 文件锁定依赖版本,保证环境可复现。</p>
</blockquote>
<ul>
<li>使用 TOML 配置管理依赖</li>
</ul>
<p>创建一个 <code>pyproject.toml</code></p>
<pre data-lang="toml" style="background-color:#151515;color:#e8e8d3;" class="language-toml "><code class="language-toml" data-lang="toml"><span>[</span><span style="color:#ffb964;">tool</span><span>.</span><span style="color:#ffb964;">uv</span><span>.</span><span style="color:#ffb964;">dependencies</span><span>]
</span><span style="color:#ffb964;">fastapi </span><span>= </span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">*</span><span style="color:#556633;">&quot;
</span><span style="color:#ffb964;">uvicorn </span><span>= </span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">*</span><span style="color:#556633;">&quot;
</span><span style="color:#ffb964;">sqlalchemy </span><span>= </span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">*</span><span style="color:#556633;">&quot;
</span></code></pre>
<p>然后同步环境:</p>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">uv</span><span> pip sync
</span></code></pre>
<p>这会根据 <code>pyproject.toml</code> + <code>uv.lock</code> 安装和锁定所有依赖。</p>
<ul>
<li>查看与卸载包</li>
</ul>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">uv</span><span> pip list </span><span style="color:#888888;"># 列出已安装包
</span><span style="color:#ffb964;">uv</span><span> pip uninstall numpy
</span></code></pre>
<hr />
<h3 id="ti-dai-chang-jian-conda-gong-zuo-liu">替代常见 Conda 工作流</h3>
<table><thead><tr><th>Conda 操作</th><th>UV 对应</th></tr></thead><tbody>
<tr><td><code>conda create -n env python=3.x</code></td><td><code>uv venv --python 3.x</code></td></tr>
<tr><td><code>conda activate env</code></td><td><code>source .venv/bin/activate</code><code>uv venv activate</code></td></tr>
<tr><td><code>conda install pkg1 pkg2</code></td><td><code>uv pip install pkg1 pkg2</code></td></tr>
<tr><td><code>conda env export &gt; env.yml</code></td><td>自动生成 <code>uv.lock</code><code>uv pip compile requirements.in</code></td></tr>
<tr><td><code>conda env update -f env.yml</code></td><td><code>uv pip sync</code>(根据 <code>uv.lock</code><code>pyproject.toml</code> 同步)</td></tr>
<tr><td><code>conda list</code></td><td><code>uv pip list</code></td></tr>
</tbody></table>
<h2 id="ipynbzhuan-markdown">ipynb转markdown</h2>
<p>首先安装 nbformat 和 nbconvert包</p>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">conda</span><span> install nbformat nbconvert</span><span style="color:#ffb964;"> -y
</span><span style="color:#ffb964;">touch</span><span> ipynb2md.py &amp;&amp; </span><span style="color:#ffb964;">nano</span><span> ipynb2md.py
</span></code></pre>
<p>写入以下脚本:</p>
<pre data-lang="python" style="background-color:#151515;color:#e8e8d3;" class="language-python "><code class="language-python" data-lang="python"><span style="color:#8fbfdc;">import </span><span>nbformat
</span><span style="color:#8fbfdc;">from </span><span>nbconvert </span><span style="color:#8fbfdc;">import </span><span>MarkdownExporter
</span><span style="color:#8fbfdc;">from </span><span>pathlib </span><span style="color:#8fbfdc;">import </span><span>Path
</span><span>
</span><span style="color:#8fbfdc;">def </span><span style="color:#fad07a;">ipynb_to_md</span><span>(</span><span style="color:#ffb964;">ipynb_path</span><span>: Path, </span><span style="color:#ffb964;">output_dir</span><span>: Path):
</span><span> </span><span style="color:#888888;">&quot;&quot;&quot;单个 ipynb 转 md&quot;&quot;&quot;
</span><span> </span><span style="color:#8fbfdc;">with </span><span style="color:#ffb964;">open</span><span>(ipynb_path, </span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">r</span><span style="color:#556633;">&quot;</span><span>, </span><span style="color:#ffb964;">encoding</span><span>=</span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">utf-8</span><span style="color:#556633;">&quot;</span><span>) </span><span style="color:#8fbfdc;">as </span><span>f:
</span><span> nb = nbformat.</span><span style="color:#ffb964;">read</span><span>(f, </span><span style="color:#ffb964;">as_version</span><span>=</span><span style="color:#cf6a4c;">4</span><span>)
</span><span>
</span><span> exporter = </span><span style="color:#ffb964;">MarkdownExporter</span><span>()
</span><span> body, resources = exporter.</span><span style="color:#ffb964;">from_notebook_node</span><span>(nb)
</span><span>
</span><span> output_file = output_dir / (ipynb_path.stem + </span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">.md</span><span style="color:#556633;">&quot;</span><span>)
</span><span> </span><span style="color:#8fbfdc;">with </span><span style="color:#ffb964;">open</span><span>(output_file, </span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">w</span><span style="color:#556633;">&quot;</span><span>, </span><span style="color:#ffb964;">encoding</span><span>=</span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">utf-8</span><span style="color:#556633;">&quot;</span><span>) </span><span style="color:#8fbfdc;">as </span><span>f:
</span><span> f.</span><span style="color:#ffb964;">write</span><span>(body)
</span><span>
</span><span> </span><span style="color:#ffb964;">print</span><span>(</span><span style="color:#8fbfdc;">f</span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">✔ 转换完成: </span><span>{ipynb_path}</span><span style="color:#99ad6a;"> -&gt; </span><span>{output_file}</span><span style="color:#556633;">&quot;</span><span>)
</span><span>
</span><span style="color:#8fbfdc;">def </span><span style="color:#fad07a;">batch_convert</span><span>(</span><span style="color:#ffb964;">input_dir</span><span>: str, </span><span style="color:#ffb964;">output_dir</span><span>: str = </span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">markdown_output</span><span style="color:#556633;">&quot;</span><span>):
</span><span> input_dir = </span><span style="color:#ffb964;">Path</span><span>(input_dir)
</span><span> output_dir = </span><span style="color:#ffb964;">Path</span><span>(output_dir)
</span><span> output_dir.</span><span style="color:#ffb964;">mkdir</span><span>(</span><span style="color:#ffb964;">parents</span><span>=True, </span><span style="color:#ffb964;">exist_ok</span><span>=True)
</span><span>
</span><span> </span><span style="color:#8fbfdc;">for </span><span>ipynb_file </span><span style="color:#8fbfdc;">in </span><span>input_dir.</span><span style="color:#ffb964;">glob</span><span>(</span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">*.ipynb</span><span style="color:#556633;">&quot;</span><span>):
</span><span> </span><span style="color:#ffb964;">ipynb_to_md</span><span>(ipynb_file, output_dir)
</span><span>
</span><span style="color:#8fbfdc;">if </span><span>__name__ == </span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">__main__</span><span style="color:#556633;">&quot;</span><span>:
</span><span> </span><span style="color:#888888;"># 修改这里的目录路径即可
</span><span> </span><span style="color:#ffb964;">batch_convert</span><span>(</span><span style="color:#ffb964;">input_dir</span><span>=</span><span style="color:#556633;">&quot;</span><span style="color:#99ad6a;">.</span><span style="color:#556633;">&quot;</span><span>)
</span></code></pre>
<p>运行脚本:</p>
<pre data-lang="bash" style="background-color:#151515;color:#e8e8d3;" class="language-bash "><code class="language-bash" data-lang="bash"><span style="color:#ffb964;">python</span><span> ipynb2md.py
</span></code></pre>
<p>脚本会自动扫描当前目录下的所有 .ipynb 文件,并把 .md 文件输出到 markdown_output/ 文件夹。</p>
<hr />
<p><strong>Done.</strong></p>
</div>
<div class="pagination">
<div class="pagination__title">
<span class="pagination__title-h">Thanks for reading! Read other posts?</span>
<hr />
</div>
<div class="pagination__buttons">
<span class="button previous">
<a href="https://blog.dich.bid/windows-6-c/">
<span class="button__icon"></span>&nbsp;
<span class="button__text">Windows系列(6):C&#x2F;C++开发配置</span>
</a>
</span>
<span class="button next">
<a href="https://blog.dich.bid/about-cslearning/">
<span class="button__text">乱七八糟:计算机科学优质视频</span>&nbsp;
<span class="button__icon"></span>
</a>
</span>
</div>
</div>
</div>
</div>
<footer class="footer">
<div class="footer__inner">
<div class="copyright">
<span>©
2025
Dichgrem</span>
<span class="copyright-theme">
<span class="copyright-theme-sep"> :: CC BY-SA 4.0 :: A friend comes from distant lands</span>
</a>
</span>
</div>
</div>
</footer>
</div>
</body>
</html>